Saturday, September 10, 2016

Setting up my ARM Cortex STM32 Development environment on Linux (Ubuntu) 16.04

Setting up my ARM Cortex STM32 Development environment on Linux (Ubuntu)


I was looking for a ARM Cortex development environment that will run on Linux and found the GNU ARM Eclipse plugin for Eclipse.  ref: http://gnuarmeclipse.github.io/
As I was familiar with the Eclipse environment and as I was using Eclipse for my Java development it seems to be the best fit for my requirements. 
I had to do the following to install Eclipse.
dont install the default eclipse avalibe from Ubuntu repository as its to ould for this development you need at least vertion 4.5
download eclipse from here  http://mirror.ufs.ac.za/eclipse/technology/epp/downloads/release/neon/R/eclipse-cpp-neon-R-linux-gtk-x86_64.tar.gz
unzip eclipse-cpp-neon-R-linux-gtk-x86_64.tar.gz
Then run eclipse
sudo eclipse
Eclipse Environment
Then updated Eclipse to the latest release.
Select the help menu in Eclipse  help > 'Check for updates' and update.

Select all for update and accept the license.
Get some Coffee as this might take some time to install ;-)
You might have to restart Eclipse when its done.

When complete then select the menu  help > 'Install new software'

Click on add and add the following details.



Then select GNU ARM C/C++ Cross development Tools and click on Next.
Select all 


Select install to complete the plugin install.

Except the warning message and you might have to reboot Eclipse.
We now need to install the toolchain for the ARM processor.
do the following in command line.
sudo add-apt-repository ppa:team-gcc-arm-embedded/ppa
sudo apt-get update
sudo apt-get install gcc-arm-embedded

Now do the following in Eclipse
Then select Menu file > new project > 

Then select your Processor details and click next.


I wanted to do development using the STM32F401C-DISCO development board.
So now I need to add the part where I can deploy the Compiled code to the dev board.
Download the stmlink from here https://github.com/texane/stlink
Then unzip the file unzip stlink-master.zip
There should now be a directory stlink-master
cd to the directory cd stlink-master
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Debug ..

make
sudo make install
Then find out where is the comand st-flash
type st-flash 
reply is
st-flash is /usr/local/bin/st-flash
Then start Eclipse again and select the following menu
Run >External tools > External tools configuration



Here is what you need to configure so that Eclipse can see your STM32F401C-DISCO


When you are done with this and you test it will fail because the compiler creates a hex file and you need to change it to create a bin file for your Dev board.

Got to the menu Eclipse Menu project > propertie > settings >



Then start creating you first application.


Compile and then run the external tool configuration that was done above and your application should now run on the Dev board.
STM32F401C-DISCO dev board
Ok we can at least deploy our code to the Dev Board/
We now have to configure the debug capability so we can get feedback from board.
Install the following drivers.
sudo apt-get install libusb-dev libusb-1.0.0-dev libftdi-dev libftdi1
Download the following Eclipse debugger  nuarmeclipse-openocd-debian from this link.
There is a 32 and 64 bit vervion download the one for your operating system
https://github.com/gnuarmeclipse/openocd/releases

Then unzip the file tar -xvf  gnuarmeclipse-openocd-debian64-0.10.0-201601101000-dev.tgz
cd into the new created directory cd openosd
Then cd into the directory cd 0.10.0-201601101000-dev
Then cd to the bin directory  cd bin
Connect your dev board and the deploy an application with debugging.
Then test the openosd by running this command
sudo ./openocd -f board/stm32f4discovery.cfg
You should see a reply something like this.
GNU ARM Eclipse 64-bits Open On-Chip Debugger 0.10.0-dev-00287-g85cec24-dirty (2016-01-10-10:31)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
Info : The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD
adapter speed: 2000 kHz
adapter_nsrst_delay: 100
none separate
srst_only separate srst_nogate srst_open_drain connect_deassert_srst
Info : Unable to match requested speed 2000 kHz, using 1800 kHz
Info : Unable to match requested speed 2000 kHz, using 1800 kHz
Info : clock speed 1800 kHz
Info : STLINK v2 JTAG v17 API v2 SWIM v0 VID 0x0483 PID 0x3748
Info : using stlink api v2
Info : Target voltage: 2.904142

Info : stm32f4x.cpu: hardware has 6 breakpoints, 4 watchpoints

The data coms led on the Dev board should now blink red green.
Stop the command by pressing CTRL -c

We now need to configure Eclipse to use the openosd.
 Start Eclips and go to the following menu.
Run>External tools>'External tools configuration'
OpenOCD configuration
Then run the command menu run > External tools > openocd
you should see something like this in the terminal if everything went ok.

Now select run menu > debug configuration >GDB Hareware Debugging
Browse for your project and select in the project pull down menu.
Select search project under the the Main tab and find your project.

Now select the debug tab
On terminal enter the following command  type arm-none-eabi-gdb  witch will return the path to the GDB
rm-none-eabi-gdb is /usr/bin/arm-none-eabi-gdb
Enter the path in the GDB command text box  /usr/bin/arm-none-eabi-gdb
and then select the Jtag device > and select GNU ARM Openocd.
Enter localhost for host name and port must be 3333

Then select debug to save.
There will then be a pop box asking you if you want to change to the Debug perspective, select yes and everything should then start debugging.



STM32 Emiliuater

There is a QEMU emulator that can simulate your hardware procesor and can be installed into eclipse.
Here is the Steps.
Download the GNU ARM Eclipse QEMU from the link below. (select the 32 or 64 bit version  .tgz)
https://github.com/gnuarmeclipse/qemu/releases

unzip the file
tar -xvf gnuarmeclipse-qemu-debian64-2.6.0-201607280535.tgz
cd to the directory that was created cd qemu
cd to your vervion directory inside the qemu  cd 2.6.0-201607280535/bin
run the command below in this bin directory.

sudo ./qemu-system-gnuarmeclipse --version

You should get a result like below

GNU ARM Eclipse 64-bits QEMU emulator version 2.6.0

Copyright (c) 2003-2008 Fabrice Bellard

Now configure Eclipse to use the QEMU

Start Eclipse and go to the following menu.
(Window -->) Preferences --> Run/Debug --> Launching --> QEMU
Set the name and binary path to the installed QEMU path done above.
My path was 
/home/anton/Downloads/qemu/2.6.0-201607280535/bin

QEMU Binary path configuration
We now need to install the QEMU Debugging plug-ins

Still need to add the External tools configure details.

Hope this has helped you getting your environment going :-)


I also found this video that basically explains what I didref :https://www.youtube.com/watch?v=HKX12hJApZM

Saturday, August 27, 2016

SDR Comparison

SDR Comparison

Name TypeFrequency rangeBand withChannelHost InterfaceWindowsLinuxMacEstimated price
AirSpy
Pre-build
24-1750 MHz
20 MSPS MSps ADC sampling, up to 80 MSPS 
1
USB
Yes
Yes
Yes using ports
US$199
SDRstick UDPSDR-HF1
Pre-built
0.1–30 MHz
80 Msps
1
1G Ethernet via BeMicroCV-A9
Yes
Yes
Yes
US$169
Apache Labs ANAN-10E
Pre-built
10 kHz – 55 MHz
122.88 Msps (14 bit ADC)
2
Gigabit Ethernet
Yes
Yes
Yes
US$995
Apache Labs ANAN-10/100
Pre-built
10 kHz – 55 MHz
122.88 Msps (16 bit ADC)
4
Gigabit Ethernet
Yes
Yes
Yes
US$1,649-US$2,449
Apache Labs ANAN-100D/200D
Pre-built
10 kHz – 55 MHz
122.88 Msps (16 bit ADC)
7
Gigabit Ethernet
Yes
Yes
Yes
US$3,299-US$3,999
SunSDR2
Pre-built
10 kHz – 160 MHz
160 MSPS
3/4
10/100 Ethernet, WLAN (embedded)
Yes
Yes
 ?
US$1,960
bladeRF
Pre-built
300 MHz - 3.8 GHz
80 kSPS - 40 MSPS
RX/TX (12-bit ADC/DAC)
 ?
USB 3.0 SuperSpeed
Yes
Yes
Yes
US$420
FLEX-6700
Pre-built
0.01–73, 135-165 MHz
245.76 MSPS (transceiver)
8/8
Ethernet
Yes
Yes
Yes
US$7,499
FLEX-6700R
Pre-built
0.01–73, 135-165 MHz
245.76 MSPS (receiver)
8/8
Ethernet
Yes
Yes
Yes
US$6,399
FLEX-6500
Pre-built
0.01–73 MHz
245.76 MSPS (transceiver)
4/4
Ethernet
Yes
Yes
Yes
US$4,299
FLEX-6300
Pre-built
0.01–54 MHz
122.88 MSPS (transceiver)
2/2
Ethernet
Yes
Yes
Yes
US$2,499
FLEX-5000A
Pre-built
0.01–65 MHz
48, 96, 192 kHz (transceiver)
2/2
1394a Firewire
Yes
No
No
US$2,800
FLEX-3000
Pre-built
0.01–65 MHz
48, 96 kHz (transceiver)
1/1
1394a Firewire
Yes
No
No
US$1,700
FLEX-1500
Pre-built
0.01–54 MHz
48 kHz (transceiver)
1/1
USB
Yes
No
No
US$650
Perseus
Pre-built
10 kHz – 40 MHz (87.5–108 MHz using FM down-converter)
80 MSPS
 ?
USB
Yes
Yes
 ?
US$1,199
SDRplay: Radio Spectrum Processor
Pre-built
0.1–2,000 MHz
0.5-12 MS/s and up to 8 MHz bandwidth
0/1
USB
Yes
Yes
Yes
US$149
ISDB-T 2035/2037
Pre-built
50–960 MHz
0.5-12 MS/s and up to 8 MHz bandwidth
0/1
USB
Yes
Yes
Yes
US$25
Soft66AD / Soft66ADD / Soft66LC4 / Soft66RTL
Pre-built
0.5–70 MHz
External ADC required (I/Q output)
0/1
USB
Yes
Unofficially
 ?
US$20
FUNcube Dongle
Pre-built
64–1700 MHz
96 kHz
0/1
USB
Yes
Yes
Yes
US$160
FUNcube Dongle Pro+
Pre-built
0.15–240 MHz, 420-1900 MHz
192 kHz
0/1
USB
Yes
Yes
Yes
US$200
FiFi-SDR
Pre-built
200 kHz – 30 MHz
96 kHz (integrated soundcard)
0/1
USB
Yes
Yes
 ?
€120
SDR-IQ
PnP
0.1 kHz – 30 MHz
66.666 MHz
1/1 ?
USB
Yes
Yes
Yes
US$525
WinRadio WR-G31DCC
Pre-built
9 kHz – 50 MHz
100 MSPS
3/3
USB
Yes
No
No
US$950
USRP B200
Pre-built
70 MHz to 6 GHz
56 Msps
 ?
USB 3.0
Yes
Yes
Yes
US$675
USRP B210
Pre-built
70 MHz to 6 GHz
56 Msps
 ?
USB 3.0
Yes
Yes
Yes
US$1,100
USRP N200
Pre-built
DC to 6 GHz
25 Msps for 16-bit samples; 50 Msps for 8-bit samples
 ?
Gigabit Ethernet
Yes
Yes
Yes
US$1,515
USRP N210
Pre-built
DC to 6 GHz
25 Msps for 16-bit samples; 50 Msps for 8-bit samples
 ?
Gigabit Ethernet
Yes
Yes
Yes
US$1,717
USRP X300
Pre-built
DC to 6 GHz
200 Msps
 ?
Gigabit Ethernet, 10 Gigabit Ethernet, PCIe
Yes
Yes
Yes
US$3,900
USRP X310
Pre-built
DC to 6 GHz
200 Msps
 ?
Gigabit Ethernet, 10 Gigabit Ethernet, PCIe
Yes
Yes
Yes
US$4,800
Cross Country Wireless SDR receiver v. 3
Pre-built
472–479 kHz, 7.0–7.3 MHz/10.10–10.15 MHz, and 14.00–14.35 MHz
External ADC required (I/Q output)
1/1
Crystal controlled two channels
Yes
Yes
Yes
US$80
Realtek RTL2832U DVB-T tuner
Pre-built with custom driver
24–1766 MHz (R820T tuner) (sensitivity drops off considerably outside this range, but can go 0–2,200 MHz (E4000 tuner with direct sampling mod))
2.4 MHz (can go up to 3.2 MHz but drops samples)
 ?
USB
Yes
Yes
Yes
US$8 - US$10
SoftRock-40
Kit
7.5 MHz
48 kHz
1
USB
Yes
Yes
Yes
US$21
SoftRock RX Ensemble II
Kit
180 kHz – 3.0 MHz, and 1.8–30 MHz operation
External ADC required (I/Q output)
1
USB
Yes
Yes
Yes
US$67
ZS-1
Pre-built
300 kHz – 30 MHz
10 kHz, 20 kHz, 40 kHz, 100 kHz
3
USB 2.0
Yes
No
No
€1,399
HackRF One
Pre-built
1 MHz - 6 GHz
8 Msps - 20 Msps
1
USB 2.0
Yes
Yes
Yes
US$299
HiQSDR
prebuilt modules & kits, pcbs
30 kHz - 62 MHz
48 - 960 kHz
 ?
10/100 Ethernet
Yes
Yes
No
US$650
US$1,400
KiwiSDR
Pre-built
0.1 - 30Mhz
30Mhz
4
Beagle black
yes
yes
yes
 USD 99
LimeSDR
Pre-built (full Open Source / Hardware)
100 kHz to 3.8 GHz
61.44 Msps (12 bit ADC)
 ?
USB 3.0, PCIe
Yes
Yes
Yes
US$299(USB) US$799(PCIe)

Wednesday, August 24, 2016

How do you build a 1U Cube-Sat Linear transponder using SDR / DSP technology with limited Power?

How do you build a 1U Cube-Sat Linear transponder using SDR / DSP technology with limited Power?



Requirements:

Satellite requirements.
  1. Linear Transponder 70cm (437Mhz) up-link and S band (2.4GHz or 1.2Ghz down) Down-link (Bandwidth ? 250Khz on 70cm ?)
  2. Satellite Low Earth orbit (LEO) altitude between 650 kilometers. We need this so we can calculate path loss and RF power and antenna gain requirements.
  3. Available Power 1.5W for transponder from Solar panels and battery system.
  4. Telemetry mode? CW / AX25 / AFSK 9k6 /....  
    1. UHF Beacon recomendation.
      • UHF Beacon interval:  about 55 seconds
      • UHF Transmit power: ~ 1 W
      • AFSK AX25 1k2 and fallback of CW 10WP 
  5. Satellite antennas for 70cm ? and (Polarization ?) 
  6. Satellite antennas for 2.4Ghz / 1.2Ghz and (Polarization ?) 
  7. Telemetry Requirements ? (ID, Temperature, Power in, Power out, Battery left, Transponder Mode status, Antenna Status, Satellite Orientation, ........)
  8. Inter board Connector Specification (PC/104 communication)
  9. OBC, SOLAR,charger,Orientation and Battery from existing Satellite ?
  10. 1 U Cube-Sat Space frame from existing Satellite (10x10x10) 1kg
  11. DSP 10 to 14Bit A/D /D/A Dynamic range. what is good enough ?
  12. PCB Board size details PC104 with cutouts for wire.
  13. Space frame and Solar panel frame and Antenna deployment. (out of scope)
  14. Solar panels. (Out of Scope)
  15. Power regulator and Charge regulator and Battery. (out of Scope)
  16. Orientation controls. (out of scope) (Stabilization)
  17. RF Linear Transponder using SDR / DSP. (70cm up 2.4Ghz or 1.2Ghz down)
  18. OBC (In scope ARM M4 or possibly A9) (FreeRTOS)
  19. Inter board communication standard.

Out of Scope for now:


  1. Space frame, Solar panels and panels frame.
  2. Solar panels
  3. Power regulator and Charge regulator and Battery.
  4. Orientation controls.
In scope for now:

  1. Linear Transponder using SDR / DSP. (ARM Processor possibly not FPLG due to power constraint.)
  2. Telemetry TX
  3. Command control RX

Block diagram.


Transponder SDR transmitter. (Down-link 145.9?? MHz USB) (not confirmed) (250Khz)


Telemetry transmitter

  • Estimated TX full power for beacon and transponder (300 mW) when Sat is in sunlight.
  • When satellite is in eclipse low power of about (30mW)

Transponder SDR receiver. (Up-link 435.??? MHz LSB ) (not confirmed) (250Khz)


  • Estimated maximum TX up-link power of 5 watts with a 7 dBi gain antenna. 

Beacon / Telemetry

Here are several DDS signal generators I'm looking at:

  1. AD9833  0 - 12.5 Mhz 
  2. AD9850  0 - 50 Mhz
  3. AD9851  0 - 70 Mhz 
  4. Si5351    0 - 150 Mhz
  5. Si5351A 0 - 290 Mhz
  6. AD9959  0 - 500Mhz
  7. AD9952  0 - 500Mhz Practical max 160Mhz depending on patern
Ref : Examples code for the STM32f4  and AD9850  https://zissisprojects.wordpress.com/2015/01/24/stm32-f4-discovery-and-ad9850-dds/



TX

  1. https://github.com/F5OEO/rpitx
  2. http://ebrombaugh.studionebula.com/radio/txdac/index.html
  3. https://www.etherkit.com/rf-modules/si5351a-breakout-board.html
  4. http://www.simplecircuits.com/files/Download/QEX_release.pdf
  5. http://www.amrad.org/projects/sdr/
  6. https://myriadrf.org/projects/rdk/
  7. http://www.eevblog.com/forum/projects/the-sdr32-a-stm32-based-software-defined-radio/
  8. http://www.stm32-sdr.com/styled/index.html  (PSK)
  9. https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/software/baremetal?rev=1395324588#code_size_information ( AD9361 NON OS Drive)
  10. https://github.com/GomSpace/libcsp (Cubesat Space Protoco)
  11. https://github.com/robots/APRS  (STM32 APRS code)
  12. https://michaldemin.wordpress.com/2012/02/27/cheap-afsk-tnc/  (AFSK stm3  2)
  13. https://github.com/athirasubhash/AX25MODEM (AX25 for STM32)
  14. www.analog.com/en/education/education-library/videos/3845680080001.html (Video Analog devices)
  15. https://datasheets.maximintegrated.com/en/ds/MAX2837.pdf  (IQ front end Maxim)
  16. https://www.maximintegrated.com/en/products/analog/data-converters/analog-front-end-ics/MAX5863.html (A/D and D/A MAXIM)
  17. https://github.com/mossmann/hackrf/blob/master/firmware/common/max2837.c (max2837 c Library)
  18. http://www.g4jnt.com/DDSVHFBeaconDriver.pdf  (DDS beacon generation)

Possible def tools.

  1. GNU radio
  2. Math lab
  3. ARM DEV board tools. (How to setup Eclipse for Arm development)
  4. Real time OS https://istarc.wordpress.com/2014/08/04/stm32f4-behold-the-project-wizard/
  5. Installing FreeRTOS on STM32F4 https://istarc.wordpress.com/2014/07/10/stm32f4-deploy-freertos-in-under-10-seconds/
Ref :

Friday, July 1, 2016

OpenWebRX with KiwiSDR covering the whole HF band 0 -30Mhz is now up and running in South Africa

OpenWebRX SDR covering the whole HF band 0 - 30Mhz  is now up and running in South Africa

This Web based SDR http://zr6aic.giga.co.za:8073 is using the new KiwiSDR Hardware running on Beagle bone.

KiwiSDR using OpenWebRX running on Beagle.
This Web based SDR is covering the Whole HF band 0- 30Mhz. here is the link go and check it out.

Here is the list of receivers around the world using the OpenWebRx platform.

http://sdr.hu/
Here is the list of OpenWebRX servers around the world.

http://sdr.hu/

The KiwiSDR will soon be available from Giga Technology. http://www.giga.co.za


OpenWebRX with KiwiSDR covering the whole HF band 0 -30Mhz is now up and running in South Africa

OpenWebRX SDR covering the whole HF band 0 -30Mhz  is now up and running in South Africa

This Web based SDR http://zr6aic.giga.co.za:8073 is using the new KiwiSDR Hardware running on Beagle bone.

KiwiSDR using OpenWebRX running on Beagle.
This Web based SDR is covering the Whole HF band 0- 30Mhz. here is the link go and check it out.

Here is the list of receivers around the world using the OpenWebRx platform.

http://sdr.hu/
Here is the list of OpenWebRX servers around the world.

http://sdr.hu/

The KiwiSDR will soon be available from Giga Technology. http://www.giga.co.za


Sunday, June 26, 2016

How to setup your NWT Spectrum Analyzer on Linux. (Ubuntu)

How to setup your NWT Spectrum Analyzer on Linux. (Ubuntu).



NWT70 in picture.

I got my Spectrum Analyzer and here are the steps I use to install and configure it on my Linux (Ubuntu) laptop.

Download the software here. http://www.dl4jal.eu/  link to the file http://www.dl4jal.eu/linnwt4_V4_11_10.tar.gz

Copy the file to your favorite directory
mkdir nwt
cd nwt
cp /home/anton/Downloads/linnwt4_V4_11_10.tar.gz  ./
Unzip the file in the directory.
unzip linnwt4_V4_11_10.tar.gz
Check if the files has unziped
There should be a directory linnwt4_V4_11_10 and cd to it.
cd linnwt4_V4_11_10
Check if you have qmake installed
qmake -v
 You need vertion QT 4 + if you don't have it, install it.
sudo apt-get install build-essential
now install QT
sudo apt-get install gcc qt4-qmake libqt4-dev
now create a directory build inside the linnwt4_V4_11_10 directory
mkdir build
Change to the build directory
cd build
run the gmake command
qmake -qt4 ../
Then run the make command
make
Get coffee ;-) it takes 2 min
There should the be a new file in exsiting directory called linnwt.
Connect your spectrum analizer to your laptop USB connector.
then run the apllication linnwt
sudo ./linnwt
mmmmm, its German!
no problem, run it with this parameter to get it in Englesh
sudo ./linnwt ../app_en.qm

USB device error could not find your NWT device.
So how do I identify my USB device and configure it in the software ?

Run the command tail -f /var/log/syslog


Then unplug your spectrum analyzer usb cable from laptop and reconnect it after 2 seconds to laptop.

There will be new text appearing in the terminal console. Something like this below.

Jun 26 11:55:07 anton-SATELLITE-P755 kernel: [51330.537093] usb 2-1.2: USB disconnect, device number 5
Jun 26 11:55:07 anton-SATELLITE-P755 kernel: [51330.537573] ftdi_sio ttyUSB0: FTDI USB Serial Device converter now disconnected from ttyUSB0
Jun 26 11:55:07 anton-SATELLITE-P755 kernel: [51330.537628] ftdi_sio 2-1.2:1.0: device disconnected
Jun 26 11:55:10 anton-SATELLITE-P755 bluetoothd[800]: Authentication attempt without agent
Jun 26 11:55:10 anton-SATELLITE-P755 bluetoothd[800]: Access denied: org.bluez.Error.Rejected
Jun 26 11:55:11 anton-SATELLITE-P755 kernel: [51334.756112] usb 2-1.2: new full-speed USB device number 6 using ehci-pci
Jun 26 11:55:11 anton-SATELLITE-P755 kernel: [51334.855421] usb 2-1.2: New USB device found, idVendor=0403, idProduct=6001
Jun 26 11:55:11 anton-SATELLITE-P755 kernel: [51334.855430] usb 2-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
Jun 26 11:55:11 anton-SATELLITE-P755 kernel: [51334.855434] usb 2-1.2: Product: FT232R USB UART
Jun 26 11:55:11 anton-SATELLITE-P755 kernel: [51334.855437] usb 2-1.2: Manufacturer: FTDI
Jun 26 11:55:11 anton-SATELLITE-P755 kernel: [51334.855440] usb 2-1.2: SerialNumber: AL01PTLP
Jun 26 11:55:11 anton-SATELLITE-P755 kernel: [51334.858330] ftdi_sio 2-1.2:1.0: FTDI USB Serial Device converter detected
Jun 26 11:55:11 anton-SATELLITE-P755 kernel: [51334.858406] usb 2-1.2: Detected FT232RL
Jun 26 11:55:11 anton-SATELLITE-P755 kernel: [51334.859036] usb 2-1.2: FTDI USB Serial Device converter now attached to ttyUSB0
Jun 26 11:55:12 anton-SATELLITE-P755 mtp-probe: checking bus 2, device 6: "/sys/devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2"
Jun 26 11:55:12 anton-SATELLITE-P755 mtp-probe: bus: 2, device: 6 was not an MTP device

You will be looking for ttyUSB?? in the text.

I my example, my usb was ttyUSB0

So now enter your ttyUSB?? in this usb port detail screen below. and then save your configeration.

Select the Settings > Options Menu from the pulldown menu in LinNWT4 application.

Change the value to /dev/ttyUSB?? Your port number found above.
In my case it was /dev/ttyUSB0

O.k., lets now setup a Frequency Spectrum scan.

Add frequency svan limits and then select a single or continuos scan option.

Connect your filter or circuit for testing on SMA terminals.

Then click on your Graphics display to see the return loss of you filter or circuit under test.

Scan display.
Hope this helps.
This spectrum Analizer is available from Giga Technology http://www.giga.co.za/ocart/index.php?route=product/product&product_id=226